Continuous Frames, Function Spaces, and the Discretization Problem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous Frames, Function Spaces, and the Discretization Problem

A continuous frame is a family of vectors in a Hilbert space which allows reproductions of arbitrary elements by continuous superpositions. Associated to a given continuous frame we construct certain Banach spaces. Many classical function spaces can be identified as such spaces. We provide a general method to derive Banach frames and atomic decompositions for these Banach spaces by sampling the...

متن کامل

The Discretization Problem for continuous frames

We characterize when a coherent state or continuous frame for a Hilbert space may be sampled to obtain a frame, which solves the discretization problem for continuous frames. In particular, we prove that every bounded continuous frame for a Hilbert space may be sampled to obtain a frame.

متن کامل

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

Continuous Curvelet Transform: II. Discretization and Frames

We develop a unifying perspective on several decompositions exhibiting directional parabolic scaling. In each decomposition, the individual atoms are highly anisotropic at fine scales, with effective support obeying the parabolic scaling principle length ≈ width. Our comparisons allow to extend Theorems known for one decomposition to others. We start from a Continuous Curvelet Transform f → Γf ...

متن کامل

Continuous $k$-Fusion Frames in Hilbert Spaces

The study of the c$k$-fusions frames shows that the emphasis on the measure spaces introduces a new idea, although some similar properties with the discrete case are raised. Moreover, due to the nature of measure spaces, we have to use new techniques for new results. Especially, the topic of the dual of frames  which is important for frame applications, have been specified  completely for the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fourier Analysis and Applications

سال: 2005

ISSN: 1069-5869,1531-5851

DOI: 10.1007/s00041-005-4053-6